Sheaves on ALE spaces and quiver varieties

Hiraku Nakajima (Kyoto University)

Algebraic Analysis and Around in honor of Professor Masaki Kashiwara's 60th birthday

June 25 - 30, 2007 Kyoto

1989 Sunner, MSRI Kronheimer - N

A description of Yang-Mills instantons on an ALE space

(generalization of Attych-Drinfeld-Hitchin-Manin)

In particular,

their moduli space = moduli space of representations

of aguiver

I didn't have contact with Professor Kashiwara at this moment.

1992~93

I defined quiver varieties as
generalization of the moduli spaces

I've got a letter from Kashiwara:

お略この向は面白い話を有難うごごいました。 これについていくつか気のついを事を書きます。

But the stability conditions (parameter used to define the "quotient") are different for instanton moduli spaces and quiver varieties.

Today. I want to D study the change of quiver varieties under move of the stability conditions (stratified Mukai flop, "Jordan" flop),

2) give the stability condition for torsion-free sheaves.

Today I also want to

3) explain an application to the representation theory
of affine Lie alg. (my student Nagao)

Dexplain a relation to the representation theory of the rational DAHA, suggested by I. Gordon.

math/0703150

§1.ALE space (constructed by Kronheimer)

O E C/ Simple singularity

Eventimen constructed

semiuniversal deformation

and its simultaneous resolution

as moduli spaces of representations of affine quivers,

together with hypertables metrics

$$X_{(7,R.\delta)} = X_{(0,5c)}$$

$$X_{(7,R.\delta)} = X_{(0,5c)}$$

$$Y_{(7,R.\delta)} = X_{(0,5c)}$$

$$Y_{(5,R.\delta)} = X_{(0,5c)}$$

If $S_C=0$ and S_R : "generic" (explained later) $T_c: X_c=C_{r} \to X_o=C_{r}^2$ within all resolution of singularities $T_c^{-1}(o)=U_c^{-1}(o)=U_c^{-1}(o)=U_c^{-1}(o)$ Dynkin diagram

framed moduli space of instautons/torsion-free sceaves = isomorphism classes of · A: auti-self-dual connection on E (evector bille with turnition) · E : torsion-free sheaf on the compactification $= \times_s \cup \text{ point } / \text{ }$ $\times_s = \times_s \cup \text{ } \text{ }$ Qine /together with trivialization . Elpt = E. (framing) · E|line = € · Eo = W/T : orbifold bundle over pt/P · Eo = (Oe@W)/T orbifold steat over line / T where W is a T-wodule

§2.Quiver varieties

V. W: I-graded vector spaces
We identify them with (dim Vi) (dim Wi) ∈ Z≥o

M(V, W) = Phon(Vo(a). Vica) Ba REH OPHon(Wi, Vi) & Hom(Vi, Wi) i e I ai bi

e.g. $A_2^{(1)}$ C_0 V_0 C_0 V_0 C_0 V_0 C_0 V_0 C_0 V_0 C_0 V_0 C_0 C_0

group action
$$M(T,W) = GV = TTGL(Ti)$$

moment map
$$\mu: |M(T, w) \longrightarrow \text{Lie GV}$$

$$(B_{a_i}, a_i, b_i) \longmapsto \sum_{i \in a_i = i} \epsilon(a_i) B_{a_i} B_{a_i} + a_i b_i$$

where
$$\mathcal{E}(f_c) = \pm 1$$
 $\mathcal{E} = \mathcal{E} \cup \mathcal{E}$ $\mathcal{E} = 1$ -1

• Complex parameter
$$S_{C} = (S_{C}^{(i)})_{i \in I} \in \mathbb{C}^{I}$$

$$\mu_{C}^{-1}(\Theta S_{C}^{(i)})_{i \neq 1} \in \mathbb{C}^{I}$$

$$\mu_{C}^{-1}(\Theta S_{C}^{(i)})_{i \neq 1} \in \mathbb{C}^{I}$$
: level set $I \subseteq I$

• real parameter (stability condition)
$$S_{R} = (S_{R}^{Ci}) \in \mathbb{R}^{L}$$

$$<$$
 unless $S=0$

$$\Rightarrow \sum_{i} S_{iR}^{(i)} dim T_{i} \leq \sum_{i} S_{iR}^{(i)} dim V_{i}$$

Write
$$S = (SR, SC) = R^{T} \oplus C^{T} = (Im H)^{T}$$

We define quiver varieties as quotients:

$$M_{S}(V,W) \stackrel{det}{=} M'(SC)^{S_{R}-semistable} // G_{V}$$

U open

 $M_{S}^{s}(V,W) \stackrel{det}{=} M'(SC)^{S_{R}-stable} // G_{V}$

 $M_s^s(V,W)$: nonsingular of dim. = $\sum_{\hat{v}} 2 \text{dim} V_{\hat{v}} \text{dim} V_{\hat{v}} - \sum_{\hat{v}_{\hat{v}}} C_{\hat{v}_{\hat{v}}} \text{dim} V_{\hat{v}} \text{dim} V_{\hat{v}}$. $M_s^s(V,W) \setminus M_s^s(V,W)$: singularities

Thus it is natural to ask when $M_5 \cdot M_5^s \neq \emptyset$, i.e., when $\exists S_{IR}$ -semistable, non S_{IR} -stable point ?

Prop. If
$$S \notin (\mathbb{R} \oplus \mathbb{C}) \otimes \mathbb{D}_{\theta}$$

for any root hyperplane $\mathbb{D}_{\theta} \subset \mathcal{G}_{\mathbb{R}}$
with $\theta = \Sigma \oplus i \times i$ $\theta_i \leq \dim V_i$
then $M_S(V,W) = M_S^S(V,W)$.

§3. Wall-crossing

Fix S_{C} , and move S_{R} . $R(S_{C},V)$ (possibly empty) $d_{C}^{+}(Q_{C},V)$ (positive voit Q_{C}^{-} dim V_{C} , Q_{C}^{-}) = 09

Then IRI has the chamber structure as

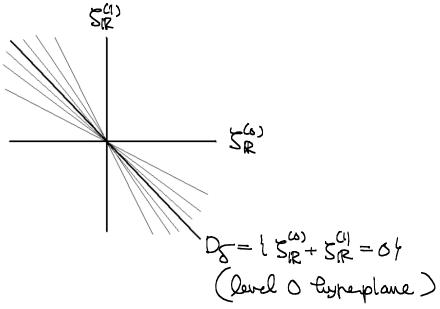
RI Do

OER(Sc.V)

If SIR stays in the connected component, then Mrs is unchanged.

Example $A_1^{(1)}$, SC = 0real roots = $l n \omega_0 + (n+\iota)\omega_1$, $(n+\iota)\omega_0 + n\omega_1 \mid n\in \mathbb{Z}$ }

The aginary roots = $l n\delta \mid n\in \mathbb{Z} + 0$



Fix V we choose finitely many positive voots R(Sa.V)

Suppose SR cross the wall Do.

(B,a,b): ±5-stable \Rightarrow 05-semistable. \Rightarrow Jordan-Hölder type filtration by typical picture in GITquotlants

(i.e. \Rightarrow \forall = \forall 0 > \forall 1 > ... > \forall No.

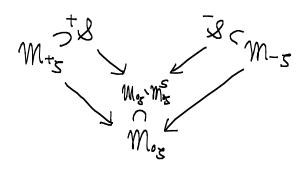
(i.e. \Rightarrow \forall = \forall 0 > \forall 1 > ... > \forall No.

Taking direct sum of grv; in (B,a,b): \$\frac{1}{2}\$ estable we have morphisms Mts, M-e \Rightarrow Mag.

· Let + &: + Sir-stable, but not - Sir-stable,

- &: - Sir-stable, but not + Sir-stable.

The images of +&, -& are in Mos Mos



Next we need to understand OSR-stable representations -> The picture is different for a real vost and an imaginary root Case 1° real root 0 = 5 Oidi a obje-stable representation is either or a) Mor(V.W) W+0 b) the unique point Bo in Mos(0,0) (i.e. din/2=02) $\text{Mos}(v,w) \setminus \text{Mos}(v,w) = \bigcup_{m>0} \text{Mos}(v',w) \times \{[B_0^m]\}$ (stratification)

Moreover the latter has no self-extension.

•
$$(B,a,b) \in \mathcal{S}$$
 is an extension of the form:

$$0 \longrightarrow (B',a',b') \longrightarrow (B,a,b) \longrightarrow B_0^{\oplus m} \longrightarrow 0$$

$$M_{os_R}^{s}(v',w)$$

·
$$(B, a, b) \in \mathbb{Z}$$
 is an extension of the form:
 $0 \to B_0^m \longrightarrow (B, a, b) \longrightarrow (B', a', b') \longrightarrow 0$

⇒ Over each stratum (I.e. fixed m=Z>0), we have a Grassmann bundle.

$$\Rightarrow \mathcal{S}^{+} \cong \bigcup_{m>0} (\mathcal{G}_{r}(m, \exists x \uparrow^{1}(\mathcal{B}_{0}, \mathcal{B}', a', b')))$$

$$V = V' \bullet w \bullet \qquad \in \mathcal{M}_{o_{S_{R}}}^{s} (v', w)$$

$$\mathcal{S}^{-} \cong \bigcup_{m} (\mathcal{G}_{r}(m, \exists x \uparrow^{1}(\mathcal{B}', a', b'), \mathcal{B}_{0}))$$

Thus My and My are related by a stratified Mukai flop.

Care 2°: 0=8 m discussed later

§4.Torsion-free sheaves on an ALE space

The usual stability parameter, which I have been used to construct the Kac-Moody affine Lie algebra action

کرده) هک

on homology groups, is $S_{IR}^{(i)} > 0 \quad \forall i$

The ALE space X_5 is an example of fuire varieties with V = 8 (imaginary root) W = 0 S: in the level O hyperplane

If 5 € (R⊕C) © Do for theal root O, Xz: nousingular

Rem. When W=0, C*(C Gv=TTGL(Vi)) acts trivially on IM(V.W). So we should consider Gv/C* instead of Gv.

In particular, $\dim = 2 - \sum Cij \dim Vi \dim Vij$ = 2 if V = S The (Krontheimen + N.)

S: as above $M_5^s(V,W) = \text{ framed moduli space of Yang-Mills instantons}$ on the ALE space X-5.

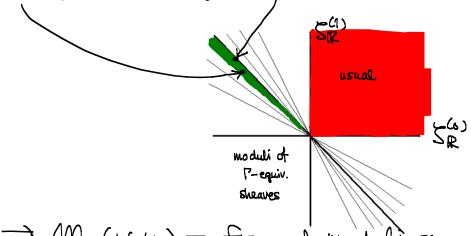
Later I found that if $S_C = 0$ and $S_R^{(i)} < 0$ $\forall i$ $\Rightarrow M_S(V,W) \cong \text{ framed moduli space of } T\text{-equivariant}$ $\text{torsion-free sheares on } \mathbb{C}^2$.

Rem. categorical McKay correspondence Gonzalez-Sprinberg + Verdier, Kapranov-Vasserot $D^{\circ}(\Gamma - CR(\Gamma^{2}) \cong D^{\circ}(Coh(\Gamma^{2}))$

Main Pheorem

"S: parameter for ALE space as above, i.e.

level O hyperplane st. S € (R⊕ C) & Do for theal root O
S: from the adjacent/chamber



→ My(V,W) = framed moduli space of torsion-free sheaves on X-s

NB. Sc=0, W=C at vertex O, V=NS $\Rightarrow M_S(v,w)$ Hilbert schere of N points on C^2/r This special case was proved by Kuznetsov.

About proof:

Straightforward combination of two techniques

- a) Kronheimer + N
- b) special case $\Gamma = \{e\}$ torsion-free sheat on \mathbb{C}^2 (Barth, reproduced in my lecture note.)

More words on the proof: We need

- 1) a resolution of the diagonal $\triangle \subset X_s \times X_s$
- 2) vanishing thin $H^{i}(\tilde{X}_{s}, \mathcal{R}^{*} \otimes \mathcal{R})$.

Both were proved in Krontheimer + N.

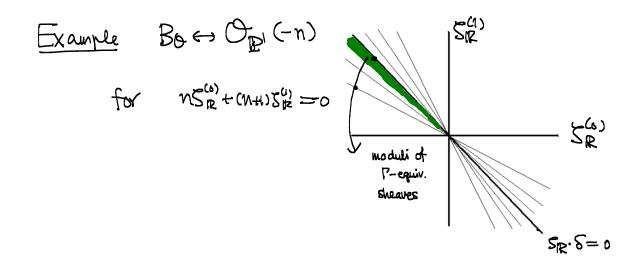
§5.Wall-crossing revisited

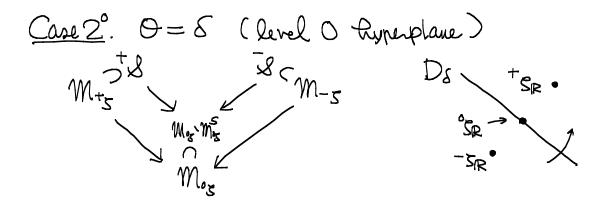
Yo shioka, in private communication, tells me that other $M_5(v,w)$'s are also framed moduli spaces of sheaves on X-s, not necessarily torsion-free, if $S_{IR} \cdot S < O$.

Then the exact sequence $0 \rightarrow (B', a', b') \rightarrow (B, a, b) \rightarrow B_8 \rightarrow 0$ can be identified with the exact sequence in CohX-s.

Bo \longleftrightarrow a torsion stead supported on curves After the wall-crossing, $0 \to Bo \longrightarrow (B, a, b) \longrightarrow (B', a', b') \longrightarrow 0$

Thus the sheaf corresponding to (B. a.b.) contains torsion.





a Sir-stable representation is enther or a) $M_{05}^{s}(V,W)$ $W\neq 0$ b) a point B in $M_{05}(\delta,0)\cong X_{05}$

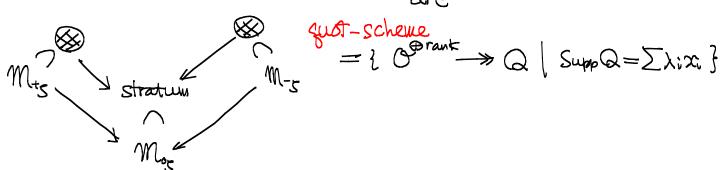
stratification of $M_{05}(V,W)$ $M_{05}(V,W) \cong \prod_{N=|\lambda|} M_{05}^{s}(V',W) \times S_{\lambda}^{N} \times S_{\delta}^{s}$ $V = V + N\delta$ $\lambda = (\lambda_{1} \ge \lambda_{2} \ge \cdots) S_{\lambda}^{N} \times S_{\delta}^{s} = 2 \sum_{\lambda_{i} \ge \lambda_{i}} x_{i} \mid x_{i} : distruct points in x_{\delta}^{s}$

Mos mos: union of stratum with 12/40.

- · different points have no extensions.
- · But $E_{x_1}(x_1,x_2) \cong T_{x_2}X_{x_3}$! 2-dimensional

→ difference from real root case.

Over each stratum, fibers of the projection $M_{-s} \to M_{\underline{s}}$ are



Opposite fibers are hand to describe ("dual quot scheme") But isomorphic to the guot scheme as in $Gr(m,N)\cong Gr(N-m,N)$ non-canonically. "Jordan" flop.

If we consider more general quiver varieties, and cross the wall defined by a root θ with $(\theta,\theta)=2-2g$ $(g\geq 0)$, we have (g+1) - Jordan "flop. (g+1) opposite loops